Metamath Proof Explorer


Theorem an52ds

Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an52ds.1
|- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> et )
Assertion an52ds
|- ( ( ( ( ( ph /\ ta ) /\ ch ) /\ th ) /\ ps ) -> et )

Proof

Step Hyp Ref Expression
1 an52ds.1
 |-  ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> et )
2 an32
 |-  ( ( ( ph /\ ps ) /\ ta ) <-> ( ( ph /\ ta ) /\ ps ) )
3 2 anbi1i
 |-  ( ( ( ( ph /\ ps ) /\ ta ) /\ th ) <-> ( ( ( ph /\ ta ) /\ ps ) /\ th ) )
4 1 an42ds
 |-  ( ( ( ( ( ph /\ ps ) /\ ta ) /\ th ) /\ ch ) -> et )
5 3 4 sylanbr
 |-  ( ( ( ( ( ph /\ ta ) /\ ps ) /\ th ) /\ ch ) -> et )
6 5 an42ds
 |-  ( ( ( ( ( ph /\ ta ) /\ ch ) /\ th ) /\ ps ) -> et )