Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | an52ds.1 | |- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> et ) |
|
Assertion | an52ds | |- ( ( ( ( ( ph /\ ta ) /\ ch ) /\ th ) /\ ps ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an52ds.1 | |- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> et ) |
|
2 | an32 | |- ( ( ( ph /\ ps ) /\ ta ) <-> ( ( ph /\ ta ) /\ ps ) ) |
|
3 | 2 | anbi1i | |- ( ( ( ( ph /\ ps ) /\ ta ) /\ th ) <-> ( ( ( ph /\ ta ) /\ ps ) /\ th ) ) |
4 | 1 | an42ds | |- ( ( ( ( ( ph /\ ps ) /\ ta ) /\ th ) /\ ch ) -> et ) |
5 | 3 4 | sylanbr | |- ( ( ( ( ( ph /\ ta ) /\ ps ) /\ th ) /\ ch ) -> et ) |
6 | 5 | an42ds | |- ( ( ( ( ( ph /\ ta ) /\ ch ) /\ th ) /\ ps ) -> et ) |