Metamath Proof Explorer


Theorem an52ds

Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an52ds.1 φ ψ χ θ τ η
Assertion an52ds φ τ χ θ ψ η

Proof

Step Hyp Ref Expression
1 an52ds.1 φ ψ χ θ τ η
2 an32 φ ψ τ φ τ ψ
3 2 anbi1i φ ψ τ θ φ τ ψ θ
4 1 an42ds φ ψ τ θ χ η
5 3 4 sylanbr φ τ ψ θ χ η
6 5 an42ds φ τ χ θ ψ η