Metamath Proof Explorer


Theorem an62ds

Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an62ds.1 φ ψ χ θ τ η ζ
Assertion an62ds φ η χ θ τ ψ ζ

Proof

Step Hyp Ref Expression
1 an62ds.1 φ ψ χ θ τ η ζ
2 an32 φ ψ η φ η ψ
3 2 anbi1i φ ψ η θ φ η ψ θ
4 3 anbi1i φ ψ η θ τ φ η ψ θ τ
5 1 an52ds φ ψ η θ τ χ ζ
6 4 5 sylanbr φ η ψ θ τ χ ζ
7 6 an52ds φ η χ θ τ ψ ζ