Metamath Proof Explorer


Theorem an72ds

Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an72ds.1 φ ψ χ θ τ η ζ σ
Assertion an72ds φ ζ χ θ τ η ψ σ

Proof

Step Hyp Ref Expression
1 an72ds.1 φ ψ χ θ τ η ζ σ
2 an32 φ ψ ζ φ ζ ψ
3 2 anbi1i φ ψ ζ θ φ ζ ψ θ
4 3 anbi1i φ ψ ζ θ τ φ ζ ψ θ τ
5 4 anbi1i φ ψ ζ θ τ η φ ζ ψ θ τ η
6 1 an62ds φ ψ ζ θ τ η χ σ
7 5 6 sylanbr φ ζ ψ θ τ η χ σ
8 7 an62ds φ ζ χ θ τ η ψ σ