Metamath Proof Explorer


Theorem an82ds

Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an82ds.1 φ ψ χ θ τ η ζ σ ρ
Assertion an82ds φ σ χ θ τ η ζ ψ ρ

Proof

Step Hyp Ref Expression
1 an82ds.1 φ ψ χ θ τ η ζ σ ρ
2 an32 φ ψ σ φ σ ψ
3 2 anbi1i φ ψ σ θ φ σ ψ θ
4 3 anbi1i φ ψ σ θ τ φ σ ψ θ τ
5 4 anbi1i φ ψ σ θ τ η φ σ ψ θ τ η
6 5 anbi1i φ ψ σ θ τ η ζ φ σ ψ θ τ η ζ
7 1 an72ds φ ψ σ θ τ η ζ χ ρ
8 6 7 sylanbr φ σ ψ θ τ η ζ χ ρ
9 8 an72ds φ σ χ θ τ η ζ ψ ρ