Metamath Proof Explorer


Theorem syl22anbrc

Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses syl22anbrc.1 φ ψ
syl22anbrc.2 φ χ
syl22anbrc.3 φ θ
syl22anbrc.4 φ τ
syl22anbrc.5 η ψ χ θ τ
Assertion syl22anbrc φ η

Proof

Step Hyp Ref Expression
1 syl22anbrc.1 φ ψ
2 syl22anbrc.2 φ χ
3 syl22anbrc.3 φ θ
4 syl22anbrc.4 φ τ
5 syl22anbrc.5 η ψ χ θ τ
6 3 4 jca φ θ τ
7 1 2 6 5 syl21anbrc φ η