Metamath Proof Explorer
Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
syl22anbrc.1 |
|
|
|
syl22anbrc.2 |
|
|
|
syl22anbrc.3 |
|
|
|
syl22anbrc.4 |
|
|
|
syl22anbrc.5 |
|
|
Assertion |
syl22anbrc |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl22anbrc.1 |
|
| 2 |
|
syl22anbrc.2 |
|
| 3 |
|
syl22anbrc.3 |
|
| 4 |
|
syl22anbrc.4 |
|
| 5 |
|
syl22anbrc.5 |
|
| 6 |
3 4
|
jca |
|
| 7 |
1 2 6 5
|
syl21anbrc |
|