Metamath Proof Explorer


Theorem syl22anbrc

Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses syl22anbrc.1 ( 𝜑𝜓 )
syl22anbrc.2 ( 𝜑𝜒 )
syl22anbrc.3 ( 𝜑𝜃 )
syl22anbrc.4 ( 𝜑𝜏 )
syl22anbrc.5 ( 𝜂 ↔ ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) )
Assertion syl22anbrc ( 𝜑𝜂 )

Proof

Step Hyp Ref Expression
1 syl22anbrc.1 ( 𝜑𝜓 )
2 syl22anbrc.2 ( 𝜑𝜒 )
3 syl22anbrc.3 ( 𝜑𝜃 )
4 syl22anbrc.4 ( 𝜑𝜏 )
5 syl22anbrc.5 ( 𝜂 ↔ ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) )
6 3 4 jca ( 𝜑 → ( 𝜃𝜏 ) )
7 1 2 6 5 syl21anbrc ( 𝜑𝜂 )