Metamath Proof Explorer
Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
syl22anbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl22anbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
syl22anbrc.3 |
⊢ ( 𝜑 → 𝜃 ) |
|
|
syl22anbrc.4 |
⊢ ( 𝜑 → 𝜏 ) |
|
|
syl22anbrc.5 |
⊢ ( 𝜂 ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) |
|
Assertion |
syl22anbrc |
⊢ ( 𝜑 → 𝜂 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl22anbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
|
syl22anbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
| 3 |
|
syl22anbrc.3 |
⊢ ( 𝜑 → 𝜃 ) |
| 4 |
|
syl22anbrc.4 |
⊢ ( 𝜑 → 𝜏 ) |
| 5 |
|
syl22anbrc.5 |
⊢ ( 𝜂 ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) |
| 6 |
3 4
|
jca |
⊢ ( 𝜑 → ( 𝜃 ∧ 𝜏 ) ) |
| 7 |
1 2 6 5
|
syl21anbrc |
⊢ ( 𝜑 → 𝜂 ) |