Metamath Proof Explorer


Theorem syl22anbrc

Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses syl22anbrc.1
|- ( ph -> ps )
syl22anbrc.2
|- ( ph -> ch )
syl22anbrc.3
|- ( ph -> th )
syl22anbrc.4
|- ( ph -> ta )
syl22anbrc.5
|- ( et <-> ( ( ps /\ ch ) /\ ( th /\ ta ) ) )
Assertion syl22anbrc
|- ( ph -> et )

Proof

Step Hyp Ref Expression
1 syl22anbrc.1
 |-  ( ph -> ps )
2 syl22anbrc.2
 |-  ( ph -> ch )
3 syl22anbrc.3
 |-  ( ph -> th )
4 syl22anbrc.4
 |-  ( ph -> ta )
5 syl22anbrc.5
 |-  ( et <-> ( ( ps /\ ch ) /\ ( th /\ ta ) ) )
6 3 4 jca
 |-  ( ph -> ( th /\ ta ) )
7 1 2 6 5 syl21anbrc
 |-  ( ph -> et )