Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl22anbrc.1 | |- ( ph -> ps ) |
|
| syl22anbrc.2 | |- ( ph -> ch ) |
||
| syl22anbrc.3 | |- ( ph -> th ) |
||
| syl22anbrc.4 | |- ( ph -> ta ) |
||
| syl22anbrc.5 | |- ( et <-> ( ( ps /\ ch ) /\ ( th /\ ta ) ) ) |
||
| Assertion | syl22anbrc | |- ( ph -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl22anbrc.1 | |- ( ph -> ps ) |
|
| 2 | syl22anbrc.2 | |- ( ph -> ch ) |
|
| 3 | syl22anbrc.3 | |- ( ph -> th ) |
|
| 4 | syl22anbrc.4 | |- ( ph -> ta ) |
|
| 5 | syl22anbrc.5 | |- ( et <-> ( ( ps /\ ch ) /\ ( th /\ ta ) ) ) |
|
| 6 | 3 4 | jca | |- ( ph -> ( th /\ ta ) ) |
| 7 | 1 2 6 5 | syl21anbrc | |- ( ph -> et ) |