Step |
Hyp |
Ref |
Expression |
1 |
|
an82ds.1 |
|- ( ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) -> rh ) |
2 |
|
an32 |
|- ( ( ( ph /\ ps ) /\ si ) <-> ( ( ph /\ si ) /\ ps ) ) |
3 |
2
|
anbi1i |
|- ( ( ( ( ph /\ ps ) /\ si ) /\ th ) <-> ( ( ( ph /\ si ) /\ ps ) /\ th ) ) |
4 |
3
|
anbi1i |
|- ( ( ( ( ( ph /\ ps ) /\ si ) /\ th ) /\ ta ) <-> ( ( ( ( ph /\ si ) /\ ps ) /\ th ) /\ ta ) ) |
5 |
4
|
anbi1i |
|- ( ( ( ( ( ( ph /\ ps ) /\ si ) /\ th ) /\ ta ) /\ et ) <-> ( ( ( ( ( ph /\ si ) /\ ps ) /\ th ) /\ ta ) /\ et ) ) |
6 |
5
|
anbi1i |
|- ( ( ( ( ( ( ( ph /\ ps ) /\ si ) /\ th ) /\ ta ) /\ et ) /\ ze ) <-> ( ( ( ( ( ( ph /\ si ) /\ ps ) /\ th ) /\ ta ) /\ et ) /\ ze ) ) |
7 |
1
|
an72ds |
|- ( ( ( ( ( ( ( ( ph /\ ps ) /\ si ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ ch ) -> rh ) |
8 |
6 7
|
sylanbr |
|- ( ( ( ( ( ( ( ( ph /\ si ) /\ ps ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ ch ) -> rh ) |
9 |
8
|
an72ds |
|- ( ( ( ( ( ( ( ( ph /\ si ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ ps ) -> rh ) |