Metamath Proof Explorer


Theorem an72ds

Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an72ds.1
|- ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) -> si )
Assertion an72ds
|- ( ( ( ( ( ( ( ph /\ ze ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ps ) -> si )

Proof

Step Hyp Ref Expression
1 an72ds.1
 |-  ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) -> si )
2 an32
 |-  ( ( ( ph /\ ps ) /\ ze ) <-> ( ( ph /\ ze ) /\ ps ) )
3 2 anbi1i
 |-  ( ( ( ( ph /\ ps ) /\ ze ) /\ th ) <-> ( ( ( ph /\ ze ) /\ ps ) /\ th ) )
4 3 anbi1i
 |-  ( ( ( ( ( ph /\ ps ) /\ ze ) /\ th ) /\ ta ) <-> ( ( ( ( ph /\ ze ) /\ ps ) /\ th ) /\ ta ) )
5 4 anbi1i
 |-  ( ( ( ( ( ( ph /\ ps ) /\ ze ) /\ th ) /\ ta ) /\ et ) <-> ( ( ( ( ( ph /\ ze ) /\ ps ) /\ th ) /\ ta ) /\ et ) )
6 1 an62ds
 |-  ( ( ( ( ( ( ( ph /\ ps ) /\ ze ) /\ th ) /\ ta ) /\ et ) /\ ch ) -> si )
7 5 6 sylanbr
 |-  ( ( ( ( ( ( ( ph /\ ze ) /\ ps ) /\ th ) /\ ta ) /\ et ) /\ ch ) -> si )
8 7 an62ds
 |-  ( ( ( ( ( ( ( ph /\ ze ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ps ) -> si )