Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | an62ds.1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜁 ) | |
Assertion | an62ds | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜓 ) → 𝜁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an62ds.1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜁 ) | |
2 | an32 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ↔ ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ) |
4 | 3 | anbi1i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ∧ 𝜏 ) ↔ ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ) |
5 | 1 | an52ds | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜒 ) → 𝜁 ) |
6 | 4 5 | sylanbr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜒 ) → 𝜁 ) |
7 | 6 | an52ds | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜓 ) → 𝜁 ) |