Metamath Proof Explorer


Theorem an62ds

Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an62ds.1 ( ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜁 )
Assertion an62ds ( ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜓 ) → 𝜁 )

Proof

Step Hyp Ref Expression
1 an62ds.1 ( ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜁 )
2 an32 ( ( ( 𝜑𝜓 ) ∧ 𝜂 ) ↔ ( ( 𝜑𝜂 ) ∧ 𝜓 ) )
3 2 anbi1i ( ( ( ( 𝜑𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) )
4 3 anbi1i ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ∧ 𝜏 ) ↔ ( ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) )
5 1 an52ds ( ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜒 ) → 𝜁 )
6 4 5 sylanbr ( ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜒 ) → 𝜁 )
7 6 an52ds ( ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜓 ) → 𝜁 )