Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | an62ds.1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜁 ) | |
| Assertion | an62ds | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜓 ) → 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an62ds.1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜁 ) | |
| 2 | an32 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ↔ ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ) |
| 4 | 3 | anbi1i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ∧ 𝜏 ) ↔ ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ) |
| 5 | 1 | an52ds | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜒 ) → 𝜁 ) |
| 6 | 4 5 | sylanbr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜒 ) → 𝜁 ) |
| 7 | 6 | an52ds | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜓 ) → 𝜁 ) |