Metamath Proof Explorer


Theorem adh-minim-ax1

Description: Derivation of ax-1 from adh-minim and ax-mp . Carew Arthur Meredith derived ax-1 inA single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas,On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax1 φ ψ φ

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem1 φ ψ χ θ ψ τ θ τ φ ψ φ
2 adh-minim-ax1-ax2-lem1 ψ φ ψ η ζ ψ σ ζ σ χ θ ψ τ θ τ φ ψ χ θ ψ τ θ τ φ
3 adh-minim-ax1-ax2-lem3 χ θ ψ τ θ τ ψ φ ψ η ζ ψ σ ζ σ χ θ ψ τ θ τ φ
4 adh-minim-ax1-ax2-lem4 χ θ ψ τ θ τ ψ φ ψ η ζ ψ σ ζ σ χ θ ψ τ θ τ φ ψ φ ψ η ζ ψ σ ζ σ χ θ ψ τ θ τ φ ψ χ θ ψ τ θ τ φ ψ φ ψ χ θ ψ τ θ τ φ
5 3 4 ax-mp ψ φ ψ η ζ ψ σ ζ σ χ θ ψ τ θ τ φ ψ χ θ ψ τ θ τ φ ψ φ ψ χ θ ψ τ θ τ φ
6 2 5 ax-mp ψ φ ψ χ θ ψ τ θ τ φ
7 adh-minim-ax1-ax2-lem4 ψ φ ψ χ θ ψ τ θ τ φ φ ψ χ θ ψ τ θ τ φ ψ φ φ ψ φ
8 6 7 ax-mp φ ψ χ θ ψ τ θ τ φ ψ φ φ ψ φ
9 1 8 ax-mp φ ψ φ