Metamath Proof Explorer


Theorem adh-minimp-jarr-ax2c-lem3

Description: Third lemma for the derivation of jarr and a commuted form of ax-2 , and indirectly ax-1 and ax-2 proper , from adh-minimp and ax-mp . Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-ax2c-lem3 φ ψ χ φ ψ θ φ θ τ τ

Proof

Step Hyp Ref Expression
1 adh-minimp-jarr-lem2 η ζ σ ρ ζ σ μ ζ μ φ ψ χ φ ψ θ φ θ τ ζ σ ρ ζ σ μ ζ μ τ
2 adh-minimp-jarr-lem2 η ζ σ ρ ζ σ μ ζ μ φ ψ χ φ ψ θ φ θ τ ζ σ ρ ζ σ μ ζ μ τ φ ψ χ φ ψ θ φ θ τ τ
3 1 2 ax-mp φ ψ χ φ ψ θ φ θ τ τ