Metamath Proof Explorer


Theorem adh-minimp-jarr-imim1-ax2c-lem1

Description: First lemma for the derivation of jarr , imim1 , and a commuted form of ax-2 , and indirectly ax-1 and ax-2 , from adh-minimp and ax-mp . Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-jarr-imim1-ax2c-lem1 φ ψ χ φ ψ θ φ θ

Proof

Step Hyp Ref Expression
1 adh-minimp η ζ σ ρ ζ σ μ ζ μ
2 adh-minimp η ζ σ ρ ζ σ μ ζ μ φ ψ χ φ ψ θ φ θ
3 1 2 ax-mp φ ψ χ φ ψ θ φ θ