Metamath Proof Explorer


Theorem aev-o

Description: A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent, proved without using ax-c16 . Version of aev using ax-c11 . (Contributed by NM, 8-Nov-2006) (Proof shortened by Andrew Salmon, 21-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion aev-o xx=yzw=v

Proof

Step Hyp Ref Expression
1 hbae-o xx=yzxx=y
2 hbae-o xx=ytxx=y
3 ax7 x=tx=yt=y
4 3 spimvw xx=yt=y
5 2 4 alrimih xx=ytt=y
6 ax7 y=uy=tu=t
7 equcomi u=tt=u
8 6 7 syl6 y=uy=tt=u
9 8 spimvw yy=tt=u
10 9 aecoms-o tt=yt=u
11 10 axc4i-o tt=ytt=u
12 hbae-o tt=uvtt=u
13 ax7 t=vt=uv=u
14 13 spimvw tt=uv=u
15 12 14 alrimih tt=uvv=u
16 aecom-o vv=uuu=v
17 11 15 16 3syl tt=yuu=v
18 ax7 u=wu=vw=v
19 18 spimvw uu=vw=v
20 5 17 19 3syl xx=yw=v
21 1 20 alrimih xx=yzw=v