Metamath Proof Explorer


Theorem hbae-o

Description: All variables are effectively bound in an identical variable specifier. Version of hbae using ax-c11 . (Contributed by NM, 13-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hbae-o xx=yzxx=y

Proof

Step Hyp Ref Expression
1 ax-c5 xx=yx=y
2 ax-c9 ¬zz=x¬zz=yx=yzx=y
3 1 2 syl7 ¬zz=x¬zz=yxx=yzx=y
4 ax-c11 xx=zxx=yzx=y
5 4 aecoms-o zz=xxx=yzx=y
6 ax-c11 xx=yxx=yyx=y
7 6 pm2.43i xx=yyx=y
8 ax-c11 yy=zyx=yzx=y
9 7 8 syl5 yy=zxx=yzx=y
10 9 aecoms-o zz=yxx=yzx=y
11 3 5 10 pm2.61ii xx=yzx=y
12 11 axc4i-o xx=yxzx=y
13 ax-11 xzx=yzxx=y
14 12 13 syl xx=yzxx=y