| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-c5 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 2 |  | ax-c9 | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 3 | 1 2 | syl7 | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 4 |  | ax-c11 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 5 | 4 | aecoms-o | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 6 |  | ax-c11 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 𝑥  =  𝑦 ) ) | 
						
							| 7 | 6 | pm2.43i | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 𝑥  =  𝑦 ) | 
						
							| 8 |  | ax-c11 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑦 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 9 | 7 8 | syl5 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 10 | 9 | aecoms-o | ⊢ ( ∀ 𝑧 𝑧  =  𝑦  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 11 | 3 5 10 | pm2.61ii | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) | 
						
							| 12 | 11 | axc4i-o | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑥 ∀ 𝑧 𝑥  =  𝑦 ) | 
						
							| 13 |  | ax-11 | ⊢ ( ∀ 𝑥 ∀ 𝑧 𝑥  =  𝑦  →  ∀ 𝑧 ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 ∀ 𝑥 𝑥  =  𝑦 ) |