Metamath Proof Explorer


Theorem aisbnaxb

Description: Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016)

Ref Expression
Hypothesis aisbnaxb.1 φψ
Assertion aisbnaxb ¬φψ

Proof

Step Hyp Ref Expression
1 aisbnaxb.1 φψ
2 1 notnoti ¬¬φψ
3 df-xor φψ¬φψ
4 2 3 mtbir ¬φψ