Description: Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aisbnaxb.1 | ||
| Assertion | aisbnaxb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisbnaxb.1 | ||
| 2 | 1 | notnoti | |
| 3 | df-xor | ||
| 4 | 2 3 | mtbir |