Metamath Proof Explorer


Theorem albidv

Description: Formula-building rule for universal quantifier (deduction form). See also albidh and albid . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis albidv.1 φψχ
Assertion albidv φxψxχ

Proof

Step Hyp Ref Expression
1 albidv.1 φψχ
2 ax-5 φxφ
3 2 1 albidh φxψxχ