Metamath Proof Explorer


Theorem albiim

Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion albiim xφψxφψxψφ

Proof

Step Hyp Ref Expression
1 dfbi2 φψφψψφ
2 1 albii xφψxφψψφ
3 19.26 xφψψφxφψxψφ
4 2 3 bitri xφψxφψxψφ