Metamath Proof Explorer


Theorem alephfplem2

Description: Lemma for alephfp . (Contributed by NM, 6-Nov-2004)

Ref Expression
Hypothesis alephfplem.1 H=recωω
Assertion alephfplem2 wωHsucw=Hw

Proof

Step Hyp Ref Expression
1 alephfplem.1 H=recωω
2 frsuc wωrecωωsucw=recωωw
3 1 fveq1i Hsucw=recωωsucw
4 1 fveq1i Hw=recωωw
5 4 fveq2i Hw=recωωw
6 2 3 5 3eqtr4g wωHsucw=Hw