Metamath Proof Explorer


Theorem alephgch

Description: If ( alephsuc A ) is equinumerous to the powerset of ( alephA ) , then ( alephA ) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephgch sucA𝒫AAGCH

Proof

Step Hyp Ref Expression
1 alephnbtwn2 ¬AxxsucA
2 sdomen2 sucA𝒫AxsucAx𝒫A
3 2 anbi2d sucA𝒫AAxxsucAAxx𝒫A
4 1 3 mtbii sucA𝒫A¬Axx𝒫A
5 4 alrimiv sucA𝒫Ax¬Axx𝒫A
6 5 olcd sucA𝒫AAFinx¬Axx𝒫A
7 fvex AV
8 elgch AVAGCHAFinx¬Axx𝒫A
9 7 8 ax-mp AGCHAFinx¬Axx𝒫A
10 6 9 sylibr sucA𝒫AAGCH