Description: If ( alephsuc A ) is equinumerous to the powerset of ( alephA ) , then ( alephA ) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | alephgch | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephnbtwn2 | |
|
2 | sdomen2 | |
|
3 | 2 | anbi2d | |
4 | 1 3 | mtbii | |
5 | 4 | alrimiv | |
6 | 5 | olcd | |
7 | fvex | |
|
8 | elgch | |
|
9 | 7 8 | ax-mp | |
10 | 6 9 | sylibr | |