Metamath Proof Explorer


Theorem alral

Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006)

Ref Expression
Assertion alral xφxAφ

Proof

Step Hyp Ref Expression
1 ala1 xφxxAφ
2 df-ral xAφxxAφ
3 1 2 sylibr xφxAφ