Metamath Proof Explorer


Theorem andnand1

Description: Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion andnand1 φψχφψχφψχ

Proof

Step Hyp Ref Expression
1 3anass φψχφψχ
2 pm4.63 ¬ψ¬χψχ
3 2 anbi2i φ¬ψ¬χφψχ
4 annim φ¬ψ¬χ¬φψ¬χ
5 1 3 4 3bitr2i φψχ¬φψ¬χ
6 df-3nand φψχφψ¬χ
7 6 notbii ¬φψχ¬φψ¬χ
8 nannot ¬φψχφψχφψχ
9 5 7 8 3bitr2i φψχφψχφψχ