| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3anass | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( 𝜑  ∧  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 2 |  | pm4.63 | ⊢ ( ¬  ( 𝜓  →  ¬  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 3 | 2 | anbi2i | ⊢ ( ( 𝜑  ∧  ¬  ( 𝜓  →  ¬  𝜒 ) )  ↔  ( 𝜑  ∧  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 4 |  | annim | ⊢ ( ( 𝜑  ∧  ¬  ( 𝜓  →  ¬  𝜒 ) )  ↔  ¬  ( 𝜑  →  ( 𝜓  →  ¬  𝜒 ) ) ) | 
						
							| 5 | 1 3 4 | 3bitr2i | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ¬  ( 𝜑  →  ( 𝜓  →  ¬  𝜒 ) ) ) | 
						
							| 6 |  | df-3nand | ⊢ ( ( 𝜑  ⊼  𝜓  ⊼  𝜒 )  ↔  ( 𝜑  →  ( 𝜓  →  ¬  𝜒 ) ) ) | 
						
							| 7 | 6 | notbii | ⊢ ( ¬  ( 𝜑  ⊼  𝜓  ⊼  𝜒 )  ↔  ¬  ( 𝜑  →  ( 𝜓  →  ¬  𝜒 ) ) ) | 
						
							| 8 |  | nannot | ⊢ ( ¬  ( 𝜑  ⊼  𝜓  ⊼  𝜒 )  ↔  ( ( 𝜑  ⊼  𝜓  ⊼  𝜒 )  ⊼  ( 𝜑  ⊼  𝜓  ⊼  𝜒 ) ) ) | 
						
							| 9 | 5 7 8 | 3bitr2i | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ( 𝜑  ⊼  𝜓  ⊼  𝜒 )  ⊼  ( 𝜑  ⊼  𝜓  ⊼  𝜒 ) ) ) |