Description: An -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imnand2 | ⊢ ( ( ¬ 𝜑 → 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nannot | ⊢ ( ¬ 𝜑 ↔ ( 𝜑 ⊼ 𝜑 ) ) | |
| 2 | nannot | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 ⊼ 𝜓 ) ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) | 
| 4 | 3 | notbii | ⊢ ( ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) | 
| 5 | iman | ⊢ ( ( ¬ 𝜑 → 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) | |
| 6 | df-nan | ⊢ ( ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ↔ ¬ ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( ( ¬ 𝜑 → 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) |