Metamath Proof Explorer


Theorem imnand2

Description: An -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion imnand2 ¬φψφφψψ

Proof

Step Hyp Ref Expression
1 nannot ¬φφφ
2 nannot ¬ψψψ
3 1 2 anbi12i ¬φ¬ψφφψψ
4 3 notbii ¬¬φ¬ψ¬φφψψ
5 iman ¬φψ¬¬φ¬ψ
6 df-nan φφψψ¬φφψψ
7 4 5 6 3bitr4i ¬φψφφψψ