Metamath Proof Explorer


Theorem aovprc

Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovprc.1 ReldomF
Assertion aovprc ¬AVBVAFB=V

Proof

Step Hyp Ref Expression
1 aovprc.1 ReldomF
2 df-aov AFB=F'''AB
3 df-br AdomFBABdomF
4 1 brrelex12i AdomFBAVBV
5 3 4 sylbir ABdomFAVBV
6 ndmafv ¬ABdomFF'''AB=V
7 5 6 nsyl5 ¬AVBVF'''AB=V
8 2 7 eqtrid ¬AVBVAFB=V