Metamath Proof Explorer


Theorem aovprc

Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovprc.1 Rel dom F
Assertion aovprc ¬ A V B V A F B = V

Proof

Step Hyp Ref Expression
1 aovprc.1 Rel dom F
2 df-aov A F B = F ''' A B
3 df-br A dom F B A B dom F
4 1 brrelex12i A dom F B A V B V
5 3 4 sylbir A B dom F A V B V
6 ndmafv ¬ A B dom F F ''' A B = V
7 5 6 nsyl5 ¬ A V B V F ''' A B = V
8 2 7 syl5eq ¬ A V B V A F B = V