Metamath Proof Explorer


Theorem aovrcl

Description: Reverse closure for an operation value, analogous to afvvv . In contrast to ovrcl , elementhood of the operation's value in a set is required, not containing an element. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovprc.1 Rel dom F
Assertion aovrcl A F B C A V B V

Proof

Step Hyp Ref Expression
1 aovprc.1 Rel dom F
2 df-aov A F B = F ''' A B
3 2 eleq1i A F B C F ''' A B C
4 afvvdm F ''' A B C A B dom F
5 df-br A dom F B A B dom F
6 1 brrelex12i A dom F B A V B V
7 5 6 sylbir A B dom F A V B V
8 4 7 syl F ''' A B C A V B V
9 3 8 sylbi A F B C A V B V