Step |
Hyp |
Ref |
Expression |
1 |
|
aovprc.1 |
|- Rel dom F |
2 |
|
df-aov |
|- (( A F B )) = ( F ''' <. A , B >. ) |
3 |
2
|
eleq1i |
|- ( (( A F B )) e. C <-> ( F ''' <. A , B >. ) e. C ) |
4 |
|
afvvdm |
|- ( ( F ''' <. A , B >. ) e. C -> <. A , B >. e. dom F ) |
5 |
|
df-br |
|- ( A dom F B <-> <. A , B >. e. dom F ) |
6 |
1
|
brrelex12i |
|- ( A dom F B -> ( A e. _V /\ B e. _V ) ) |
7 |
5 6
|
sylbir |
|- ( <. A , B >. e. dom F -> ( A e. _V /\ B e. _V ) ) |
8 |
4 7
|
syl |
|- ( ( F ''' <. A , B >. ) e. C -> ( A e. _V /\ B e. _V ) ) |
9 |
3 8
|
sylbi |
|- ( (( A F B )) e. C -> ( A e. _V /\ B e. _V ) ) |