Metamath Proof Explorer


Theorem aovrcl

Description: Reverse closure for an operation value, analogous to afvvv . In contrast to ovrcl , elementhood of the operation's value in a set is required, not containing an element. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovprc.1
|- Rel dom F
Assertion aovrcl
|- ( (( A F B )) e. C -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 aovprc.1
 |-  Rel dom F
2 df-aov
 |-  (( A F B )) = ( F ''' <. A , B >. )
3 2 eleq1i
 |-  ( (( A F B )) e. C <-> ( F ''' <. A , B >. ) e. C )
4 afvvdm
 |-  ( ( F ''' <. A , B >. ) e. C -> <. A , B >. e. dom F )
5 df-br
 |-  ( A dom F B <-> <. A , B >. e. dom F )
6 1 brrelex12i
 |-  ( A dom F B -> ( A e. _V /\ B e. _V ) )
7 5 6 sylbir
 |-  ( <. A , B >. e. dom F -> ( A e. _V /\ B e. _V ) )
8 4 7 syl
 |-  ( ( F ''' <. A , B >. ) e. C -> ( A e. _V /\ B e. _V ) )
9 3 8 sylbi
 |-  ( (( A F B )) e. C -> ( A e. _V /\ B e. _V ) )