Metamath Proof Explorer


Theorem afvvdm

Description: If the function value of a class for an argument is a set, the argument is contained in the domain of the class. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvdm
|- ( ( F ''' A ) e. B -> A e. dom F )

Proof

Step Hyp Ref Expression
1 ndmafv
 |-  ( -. A e. dom F -> ( F ''' A ) = _V )
2 nvelim
 |-  ( ( F ''' A ) = _V -> -. ( F ''' A ) e. B )
3 1 2 syl
 |-  ( -. A e. dom F -> -. ( F ''' A ) e. B )
4 3 con4i
 |-  ( ( F ''' A ) e. B -> A e. dom F )