Metamath Proof Explorer


Theorem afvvdm

Description: If the function value of a class for an argument is a set, the argument is contained in the domain of the class. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvdm F ''' A B A dom F

Proof

Step Hyp Ref Expression
1 ndmafv ¬ A dom F F ''' A = V
2 nvelim F ''' A = V ¬ F ''' A B
3 1 2 syl ¬ A dom F ¬ F ''' A B
4 3 con4i F ''' A B A dom F