Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc . (Contributed by Alexander van der Vekens, 26-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | aovprc.1 | ⊢ Rel dom 𝐹 | |
Assertion | aovprc | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → (( 𝐴 𝐹 𝐵 )) = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aovprc.1 | ⊢ Rel dom 𝐹 | |
2 | df-aov | ⊢ (( 𝐴 𝐹 𝐵 )) = ( 𝐹 ''' 〈 𝐴 , 𝐵 〉 ) | |
3 | df-br | ⊢ ( 𝐴 dom 𝐹 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) | |
4 | 1 | brrelex12i | ⊢ ( 𝐴 dom 𝐹 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
5 | 3 4 | sylbir | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
6 | ndmafv | ⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐹 ''' 〈 𝐴 , 𝐵 〉 ) = V ) | |
7 | 5 6 | nsyl5 | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ''' 〈 𝐴 , 𝐵 〉 ) = V ) |
8 | 2 7 | syl5eq | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → (( 𝐴 𝐹 𝐵 )) = V ) |