Metamath Proof Explorer


Theorem aovprc

Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovprc.1 Rel dom 𝐹
Assertion aovprc ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → (( 𝐴 𝐹 𝐵 )) = V )

Proof

Step Hyp Ref Expression
1 aovprc.1 Rel dom 𝐹
2 df-aov (( 𝐴 𝐹 𝐵 )) = ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ )
3 df-br ( 𝐴 dom 𝐹 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 )
4 1 brrelex12i ( 𝐴 dom 𝐹 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
5 3 4 sylbir ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
6 ndmafv ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) = V )
7 5 6 nsyl5 ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) = V )
8 2 7 syl5eq ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → (( 𝐴 𝐹 𝐵 )) = V )