Metamath Proof Explorer


Theorem arwcd

Description: The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A=ArrowC
arwdm.b B=BaseC
Assertion arwcd FAcodaFB

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 arwdm.b B=BaseC
3 eqid HomaC=HomaC
4 1 3 arwhoma FAFdomaFHomaCcodaF
5 3 2 homarcl2 FdomaFHomaCcodaFdomaFBcodaFB
6 4 5 syl FAdomaFBcodaFB
7 6 simprd FAcodaFB