Description: The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwrcl.a | |- A = ( Arrow ` C ) |
|
| arwdm.b | |- B = ( Base ` C ) |
||
| Assertion | arwcd | |- ( F e. A -> ( codA ` F ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | |- A = ( Arrow ` C ) |
|
| 2 | arwdm.b | |- B = ( Base ` C ) |
|
| 3 | eqid | |- ( HomA ` C ) = ( HomA ` C ) |
|
| 4 | 1 3 | arwhoma | |- ( F e. A -> F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) ) |
| 5 | 3 2 | homarcl2 | |- ( F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) -> ( ( domA ` F ) e. B /\ ( codA ` F ) e. B ) ) |
| 6 | 4 5 | syl | |- ( F e. A -> ( ( domA ` F ) e. B /\ ( codA ` F ) e. B ) ) |
| 7 | 6 | simprd | |- ( F e. A -> ( codA ` F ) e. B ) |