| Step |
Hyp |
Ref |
Expression |
| 1 |
|
arwrcl.a |
|- A = ( Arrow ` C ) |
| 2 |
|
arwhoma.h |
|- H = ( HomA ` C ) |
| 3 |
1 2
|
arwval |
|- A = U. ran H |
| 4 |
3
|
eleq2i |
|- ( F e. A <-> F e. U. ran H ) |
| 5 |
4
|
biimpi |
|- ( F e. A -> F e. U. ran H ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
1
|
arwrcl |
|- ( F e. A -> C e. Cat ) |
| 8 |
2 6 7
|
homaf |
|- ( F e. A -> H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
| 9 |
|
ffn |
|- ( H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) -> H Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 10 |
|
fnunirn |
|- ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) -> ( F e. U. ran H <-> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) ) |
| 11 |
8 9 10
|
3syl |
|- ( F e. A -> ( F e. U. ran H <-> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) ) |
| 12 |
5 11
|
mpbid |
|- ( F e. A -> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) |
| 13 |
|
fveq2 |
|- ( z = <. x , y >. -> ( H ` z ) = ( H ` <. x , y >. ) ) |
| 14 |
|
df-ov |
|- ( x H y ) = ( H ` <. x , y >. ) |
| 15 |
13 14
|
eqtr4di |
|- ( z = <. x , y >. -> ( H ` z ) = ( x H y ) ) |
| 16 |
15
|
eleq2d |
|- ( z = <. x , y >. -> ( F e. ( H ` z ) <-> F e. ( x H y ) ) ) |
| 17 |
16
|
rexxp |
|- ( E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) <-> E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) ) |
| 18 |
12 17
|
sylib |
|- ( F e. A -> E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) ) |
| 19 |
|
id |
|- ( F e. ( x H y ) -> F e. ( x H y ) ) |
| 20 |
2
|
homadm |
|- ( F e. ( x H y ) -> ( domA ` F ) = x ) |
| 21 |
2
|
homacd |
|- ( F e. ( x H y ) -> ( codA ` F ) = y ) |
| 22 |
20 21
|
oveq12d |
|- ( F e. ( x H y ) -> ( ( domA ` F ) H ( codA ` F ) ) = ( x H y ) ) |
| 23 |
19 22
|
eleqtrrd |
|- ( F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| 24 |
23
|
rexlimivw |
|- ( E. y e. ( Base ` C ) F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| 25 |
24
|
rexlimivw |
|- ( E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| 26 |
18 25
|
syl |
|- ( F e. A -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |