Metamath Proof Explorer


Theorem asclelbas

Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a A = algSc W
asclelbas.f F = Scalar W
asclelbas.b B = Base F
asclelbas.w φ W AssAlg
asclelbas.c φ C B
Assertion asclelbas φ A C Base W

Proof

Step Hyp Ref Expression
1 asclelbas.a A = algSc W
2 asclelbas.f F = Scalar W
3 asclelbas.b B = Base F
4 asclelbas.w φ W AssAlg
5 asclelbas.c φ C B
6 eqid W = W
7 eqid 1 W = 1 W
8 1 2 3 6 7 asclval C B A C = C W 1 W
9 5 8 syl φ A C = C W 1 W
10 eqid Base W = Base W
11 assalmod W AssAlg W LMod
12 4 11 syl φ W LMod
13 assaring W AssAlg W Ring
14 10 7 ringidcl W Ring 1 W Base W
15 4 13 14 3syl φ 1 W Base W
16 10 2 6 3 12 5 15 lmodvscld φ C W 1 W Base W
17 9 16 eqeltrd φ A C Base W