Metamath Proof Explorer


Theorem asclelbas

Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a
|- A = ( algSc ` W )
asclelbas.f
|- F = ( Scalar ` W )
asclelbas.b
|- B = ( Base ` F )
asclelbas.w
|- ( ph -> W e. AssAlg )
asclelbas.c
|- ( ph -> C e. B )
Assertion asclelbas
|- ( ph -> ( A ` C ) e. ( Base ` W ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a
 |-  A = ( algSc ` W )
2 asclelbas.f
 |-  F = ( Scalar ` W )
3 asclelbas.b
 |-  B = ( Base ` F )
4 asclelbas.w
 |-  ( ph -> W e. AssAlg )
5 asclelbas.c
 |-  ( ph -> C e. B )
6 eqid
 |-  ( .s ` W ) = ( .s ` W )
7 eqid
 |-  ( 1r ` W ) = ( 1r ` W )
8 1 2 3 6 7 asclval
 |-  ( C e. B -> ( A ` C ) = ( C ( .s ` W ) ( 1r ` W ) ) )
9 5 8 syl
 |-  ( ph -> ( A ` C ) = ( C ( .s ` W ) ( 1r ` W ) ) )
10 eqid
 |-  ( Base ` W ) = ( Base ` W )
11 assalmod
 |-  ( W e. AssAlg -> W e. LMod )
12 4 11 syl
 |-  ( ph -> W e. LMod )
13 assaring
 |-  ( W e. AssAlg -> W e. Ring )
14 10 7 ringidcl
 |-  ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) )
15 4 13 14 3syl
 |-  ( ph -> ( 1r ` W ) e. ( Base ` W ) )
16 10 2 6 3 12 5 15 lmodvscld
 |-  ( ph -> ( C ( .s ` W ) ( 1r ` W ) ) e. ( Base ` W ) )
17 9 16 eqeltrd
 |-  ( ph -> ( A ` C ) e. ( Base ` W ) )