Metamath Proof Explorer


Theorem asclelbas

Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025) (Proof shortened by Thierry Arnoux, 22-Sep-2025)

Ref Expression
Hypotheses asclelbas.a
|- A = ( algSc ` W )
asclelbas.f
|- F = ( Scalar ` W )
asclelbas.b
|- B = ( Base ` F )
asclelbas.w
|- ( ph -> W e. AssAlg )
asclelbas.c
|- ( ph -> C e. B )
Assertion asclelbas
|- ( ph -> ( A ` C ) e. ( Base ` W ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a
 |-  A = ( algSc ` W )
2 asclelbas.f
 |-  F = ( Scalar ` W )
3 asclelbas.b
 |-  B = ( Base ` F )
4 asclelbas.w
 |-  ( ph -> W e. AssAlg )
5 asclelbas.c
 |-  ( ph -> C e. B )
6 assaring
 |-  ( W e. AssAlg -> W e. Ring )
7 4 6 syl
 |-  ( ph -> W e. Ring )
8 assalmod
 |-  ( W e. AssAlg -> W e. LMod )
9 4 8 syl
 |-  ( ph -> W e. LMod )
10 eqid
 |-  ( Base ` W ) = ( Base ` W )
11 1 2 7 9 3 10 asclf
 |-  ( ph -> A : B --> ( Base ` W ) )
12 11 5 ffvelcdmd
 |-  ( ph -> ( A ` C ) e. ( Base ` W ) )