Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025) (Proof shortened by Thierry Arnoux, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclelbas.a | |- A = ( algSc ` W ) |
|
| asclelbas.f | |- F = ( Scalar ` W ) |
||
| asclelbas.b | |- B = ( Base ` F ) |
||
| asclelbas.w | |- ( ph -> W e. AssAlg ) |
||
| asclelbas.c | |- ( ph -> C e. B ) |
||
| Assertion | asclelbas | |- ( ph -> ( A ` C ) e. ( Base ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclelbas.a | |- A = ( algSc ` W ) |
|
| 2 | asclelbas.f | |- F = ( Scalar ` W ) |
|
| 3 | asclelbas.b | |- B = ( Base ` F ) |
|
| 4 | asclelbas.w | |- ( ph -> W e. AssAlg ) |
|
| 5 | asclelbas.c | |- ( ph -> C e. B ) |
|
| 6 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 7 | 4 6 | syl | |- ( ph -> W e. Ring ) |
| 8 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 9 | 4 8 | syl | |- ( ph -> W e. LMod ) |
| 10 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 11 | 1 2 7 9 3 10 | asclf | |- ( ph -> A : B --> ( Base ` W ) ) |
| 12 | 11 5 | ffvelcdmd | |- ( ph -> ( A ` C ) e. ( Base ` W ) ) |