| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclelbas.a |
|- A = ( algSc ` W ) |
| 2 |
|
asclelbas.f |
|- F = ( Scalar ` W ) |
| 3 |
|
asclelbas.b |
|- B = ( Base ` F ) |
| 4 |
|
asclelbas.w |
|- ( ph -> W e. AssAlg ) |
| 5 |
|
asclelbas.c |
|- ( ph -> C e. B ) |
| 6 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 7 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
| 8 |
1 2 3 6 7
|
asclval |
|- ( C e. B -> ( A ` C ) = ( C ( .s ` W ) ( 1r ` W ) ) ) |
| 9 |
5 8
|
syl |
|- ( ph -> ( A ` C ) = ( C ( .s ` W ) ( 1r ` W ) ) ) |
| 10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 11 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
| 12 |
4 11
|
syl |
|- ( ph -> W e. LMod ) |
| 13 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
| 14 |
10 7
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 15 |
4 13 14
|
3syl |
|- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
| 16 |
10 2 6 3 12 5 15
|
lmodvscld |
|- ( ph -> ( C ( .s ` W ) ( 1r ` W ) ) e. ( Base ` W ) ) |
| 17 |
9 16
|
eqeltrd |
|- ( ph -> ( A ` C ) e. ( Base ` W ) ) |