Metamath Proof Explorer


Theorem asclcntr

Description: The algebra scalars function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a
|- A = ( algSc ` W )
asclelbas.f
|- F = ( Scalar ` W )
asclelbas.b
|- B = ( Base ` F )
asclelbas.w
|- ( ph -> W e. AssAlg )
asclelbas.c
|- ( ph -> C e. B )
asclcntr.m
|- M = ( mulGrp ` W )
Assertion asclcntr
|- ( ph -> ( A ` C ) e. ( Cntr ` M ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a
 |-  A = ( algSc ` W )
2 asclelbas.f
 |-  F = ( Scalar ` W )
3 asclelbas.b
 |-  B = ( Base ` F )
4 asclelbas.w
 |-  ( ph -> W e. AssAlg )
5 asclelbas.c
 |-  ( ph -> C e. B )
6 asclcntr.m
 |-  M = ( mulGrp ` W )
7 eqid
 |-  ( Base ` W ) = ( Base ` W )
8 eqid
 |-  ( Cntr ` M ) = ( Cntr ` M )
9 1 2 3 4 5 asclelbas
 |-  ( ph -> ( A ` C ) e. ( Base ` W ) )
10 4 adantr
 |-  ( ( ph /\ x e. ( Base ` W ) ) -> W e. AssAlg )
11 5 adantr
 |-  ( ( ph /\ x e. ( Base ` W ) ) -> C e. B )
12 simpr
 |-  ( ( ph /\ x e. ( Base ` W ) ) -> x e. ( Base ` W ) )
13 eqid
 |-  ( .r ` W ) = ( .r ` W )
14 eqid
 |-  ( .s ` W ) = ( .s ` W )
15 1 2 3 7 13 14 asclmul1
 |-  ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( C ( .s ` W ) x ) )
16 1 2 3 7 13 14 asclmul2
 |-  ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( A ` C ) ) = ( C ( .s ` W ) x ) )
17 15 16 eqtr4d
 |-  ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( x ( .r ` W ) ( A ` C ) ) )
18 10 11 12 17 syl3anc
 |-  ( ( ph /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( x ( .r ` W ) ( A ` C ) ) )
19 7 6 8 9 18 elmgpcntrd
 |-  ( ph -> ( A ` C ) e. ( Cntr ` M ) )