| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclelbas.a |
|- A = ( algSc ` W ) |
| 2 |
|
asclelbas.f |
|- F = ( Scalar ` W ) |
| 3 |
|
asclelbas.b |
|- B = ( Base ` F ) |
| 4 |
|
asclelbas.w |
|- ( ph -> W e. AssAlg ) |
| 5 |
|
asclelbas.c |
|- ( ph -> C e. B ) |
| 6 |
|
asclcntr.m |
|- M = ( mulGrp ` W ) |
| 7 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 8 |
|
eqid |
|- ( Cntr ` M ) = ( Cntr ` M ) |
| 9 |
1 2 3 4 5
|
asclelbas |
|- ( ph -> ( A ` C ) e. ( Base ` W ) ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` W ) ) -> W e. AssAlg ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ x e. ( Base ` W ) ) -> C e. B ) |
| 12 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` W ) ) -> x e. ( Base ` W ) ) |
| 13 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
| 14 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 15 |
1 2 3 7 13 14
|
asclmul1 |
|- ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( C ( .s ` W ) x ) ) |
| 16 |
1 2 3 7 13 14
|
asclmul2 |
|- ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( A ` C ) ) = ( C ( .s ` W ) x ) ) |
| 17 |
15 16
|
eqtr4d |
|- ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( x ( .r ` W ) ( A ` C ) ) ) |
| 18 |
10 11 12 17
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( x ( .r ` W ) ( A ` C ) ) ) |
| 19 |
7 6 8 9 18
|
elmgpcntrd |
|- ( ph -> ( A ` C ) e. ( Cntr ` M ) ) |