Step |
Hyp |
Ref |
Expression |
1 |
|
asclelbas.a |
|- A = ( algSc ` W ) |
2 |
|
asclelbas.f |
|- F = ( Scalar ` W ) |
3 |
|
asclelbas.b |
|- B = ( Base ` F ) |
4 |
|
asclelbas.w |
|- ( ph -> W e. AssAlg ) |
5 |
|
asclelbas.c |
|- ( ph -> C e. B ) |
6 |
|
asclcntr.m |
|- M = ( mulGrp ` W ) |
7 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
8 |
|
eqid |
|- ( Cntr ` M ) = ( Cntr ` M ) |
9 |
1 2 3 4 5
|
asclelbas |
|- ( ph -> ( A ` C ) e. ( Base ` W ) ) |
10 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` W ) ) -> W e. AssAlg ) |
11 |
5
|
adantr |
|- ( ( ph /\ x e. ( Base ` W ) ) -> C e. B ) |
12 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` W ) ) -> x e. ( Base ` W ) ) |
13 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
14 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
15 |
1 2 3 7 13 14
|
asclmul1 |
|- ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( C ( .s ` W ) x ) ) |
16 |
1 2 3 7 13 14
|
asclmul2 |
|- ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( A ` C ) ) = ( C ( .s ` W ) x ) ) |
17 |
15 16
|
eqtr4d |
|- ( ( W e. AssAlg /\ C e. B /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( x ( .r ` W ) ( A ` C ) ) ) |
18 |
10 11 12 17
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) x ) = ( x ( .r ` W ) ( A ` C ) ) ) |
19 |
7 6 8 9 18
|
elmgpcntrd |
|- ( ph -> ( A ` C ) e. ( Cntr ` M ) ) |