Metamath Proof Explorer


Theorem elmgpcntrd

Description: The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses elmgpcntrd.b
|- B = ( Base ` R )
elmgpcntrd.m
|- M = ( mulGrp ` R )
elmgpcntrd.z
|- Z = ( Cntr ` M )
elmgpcntrd.x
|- ( ph -> X e. B )
elmgpcntrd.y
|- ( ( ph /\ y e. B ) -> ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) )
Assertion elmgpcntrd
|- ( ph -> X e. Z )

Proof

Step Hyp Ref Expression
1 elmgpcntrd.b
 |-  B = ( Base ` R )
2 elmgpcntrd.m
 |-  M = ( mulGrp ` R )
3 elmgpcntrd.z
 |-  Z = ( Cntr ` M )
4 elmgpcntrd.x
 |-  ( ph -> X e. B )
5 elmgpcntrd.y
 |-  ( ( ph /\ y e. B ) -> ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) )
6 5 ralrimiva
 |-  ( ph -> A. y e. B ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) )
7 2 1 mgpbas
 |-  B = ( Base ` M )
8 eqid
 |-  ( .r ` R ) = ( .r ` R )
9 2 8 mgpplusg
 |-  ( .r ` R ) = ( +g ` M )
10 7 9 3 elcntr
 |-  ( X e. Z <-> ( X e. B /\ A. y e. B ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) ) )
11 4 6 10 sylanbrc
 |-  ( ph -> X e. Z )