Description: The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmgpcntrd.b | |- B = ( Base ` R ) |
|
| elmgpcntrd.m | |- M = ( mulGrp ` R ) |
||
| elmgpcntrd.z | |- Z = ( Cntr ` M ) |
||
| elmgpcntrd.x | |- ( ph -> X e. B ) |
||
| elmgpcntrd.y | |- ( ( ph /\ y e. B ) -> ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) ) |
||
| Assertion | elmgpcntrd | |- ( ph -> X e. Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmgpcntrd.b | |- B = ( Base ` R ) |
|
| 2 | elmgpcntrd.m | |- M = ( mulGrp ` R ) |
|
| 3 | elmgpcntrd.z | |- Z = ( Cntr ` M ) |
|
| 4 | elmgpcntrd.x | |- ( ph -> X e. B ) |
|
| 5 | elmgpcntrd.y | |- ( ( ph /\ y e. B ) -> ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) ) |
|
| 6 | 5 | ralrimiva | |- ( ph -> A. y e. B ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) ) |
| 7 | 2 1 | mgpbas | |- B = ( Base ` M ) |
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | 2 8 | mgpplusg | |- ( .r ` R ) = ( +g ` M ) |
| 10 | 7 9 3 | elcntr | |- ( X e. Z <-> ( X e. B /\ A. y e. B ( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) ) ) |
| 11 | 4 6 10 | sylanbrc | |- ( ph -> X e. Z ) |