Metamath Proof Explorer


Theorem elmgpcntrd

Description: The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses elmgpcntrd.b 𝐵 = ( Base ‘ 𝑅 )
elmgpcntrd.m 𝑀 = ( mulGrp ‘ 𝑅 )
elmgpcntrd.z 𝑍 = ( Cntr ‘ 𝑀 )
elmgpcntrd.x ( 𝜑𝑋𝐵 )
elmgpcntrd.y ( ( 𝜑𝑦𝐵 ) → ( 𝑋 ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑋 ) )
Assertion elmgpcntrd ( 𝜑𝑋𝑍 )

Proof

Step Hyp Ref Expression
1 elmgpcntrd.b 𝐵 = ( Base ‘ 𝑅 )
2 elmgpcntrd.m 𝑀 = ( mulGrp ‘ 𝑅 )
3 elmgpcntrd.z 𝑍 = ( Cntr ‘ 𝑀 )
4 elmgpcntrd.x ( 𝜑𝑋𝐵 )
5 elmgpcntrd.y ( ( 𝜑𝑦𝐵 ) → ( 𝑋 ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑋 ) )
6 5 ralrimiva ( 𝜑 → ∀ 𝑦𝐵 ( 𝑋 ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑋 ) )
7 2 1 mgpbas 𝐵 = ( Base ‘ 𝑀 )
8 eqid ( .r𝑅 ) = ( .r𝑅 )
9 2 8 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
10 7 9 3 elcntr ( 𝑋𝑍 ↔ ( 𝑋𝐵 ∧ ∀ 𝑦𝐵 ( 𝑋 ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) )
11 4 6 10 sylanbrc ( 𝜑𝑋𝑍 )