Step |
Hyp |
Ref |
Expression |
1 |
|
elmgpcntrd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
elmgpcntrd.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
elmgpcntrd.z |
⊢ 𝑍 = ( Cntr ‘ 𝑀 ) |
4 |
|
elmgpcntrd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
elmgpcntrd.y |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
6 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑋 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
7 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
2 8
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
10 |
7 9 3
|
elcntr |
⊢ ( 𝑋 ∈ 𝑍 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑋 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
11 |
4 6 10
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ 𝑍 ) |