Metamath Proof Explorer


Theorem elmgpcntrd

Description: The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses elmgpcntrd.b B = Base R
elmgpcntrd.m M = mulGrp R
elmgpcntrd.z Z = Cntr M
elmgpcntrd.x φ X B
elmgpcntrd.y φ y B X R y = y R X
Assertion elmgpcntrd φ X Z

Proof

Step Hyp Ref Expression
1 elmgpcntrd.b B = Base R
2 elmgpcntrd.m M = mulGrp R
3 elmgpcntrd.z Z = Cntr M
4 elmgpcntrd.x φ X B
5 elmgpcntrd.y φ y B X R y = y R X
6 5 ralrimiva φ y B X R y = y R X
7 2 1 mgpbas B = Base M
8 eqid R = R
9 2 8 mgpplusg R = + M
10 7 9 3 elcntr X Z X B y B X R y = y R X
11 4 6 10 sylanbrc φ X Z