Metamath Proof Explorer


Theorem asclcom

Description: Scalars are commutative after being lifted.

However, the scalars themselves are not necessarily commutative if the algebra is not a faithful module. For example, Let F be the 2 by 2 upper triangular matrix algebra over a commutative ring W . It is provable that F is in general non-commutative. Define scalar multiplication C .x. X as multipying the top-left entry, which is a "vector" element of W , of the "scalar" C , which is now an upper triangular matrix, with the "vector" X e. ( BaseW ) .

Equivalently, the algebra scalars function is not necessarily injective unless the algebra is faithful. Therefore, all "scalar injection" was renamed.

Alternate proof involves assa2ass , assa2ass2 , and asclval , by setting X and Y the multiplicative identity of the algebra.

(Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a
|- A = ( algSc ` W )
asclelbas.f
|- F = ( Scalar ` W )
asclelbas.b
|- B = ( Base ` F )
asclelbas.w
|- ( ph -> W e. AssAlg )
asclelbas.c
|- ( ph -> C e. B )
asclcom.m
|- .* = ( .r ` F )
asclcom.d
|- ( ph -> D e. B )
Assertion asclcom
|- ( ph -> ( A ` ( C .* D ) ) = ( A ` ( D .* C ) ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a
 |-  A = ( algSc ` W )
2 asclelbas.f
 |-  F = ( Scalar ` W )
3 asclelbas.b
 |-  B = ( Base ` F )
4 asclelbas.w
 |-  ( ph -> W e. AssAlg )
5 asclelbas.c
 |-  ( ph -> C e. B )
6 asclcom.m
 |-  .* = ( .r ` F )
7 asclcom.d
 |-  ( ph -> D e. B )
8 1 2 3 4 7 asclelbas
 |-  ( ph -> ( A ` D ) e. ( Base ` W ) )
9 eqid
 |-  ( Base ` W ) = ( Base ` W )
10 eqid
 |-  ( .r ` W ) = ( .r ` W )
11 eqid
 |-  ( .s ` W ) = ( .s ` W )
12 1 2 3 9 10 11 asclmul1
 |-  ( ( W e. AssAlg /\ C e. B /\ ( A ` D ) e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) ( A ` D ) ) = ( C ( .s ` W ) ( A ` D ) ) )
13 1 2 3 9 10 11 asclmul2
 |-  ( ( W e. AssAlg /\ C e. B /\ ( A ` D ) e. ( Base ` W ) ) -> ( ( A ` D ) ( .r ` W ) ( A ` C ) ) = ( C ( .s ` W ) ( A ` D ) ) )
14 12 13 eqtr4d
 |-  ( ( W e. AssAlg /\ C e. B /\ ( A ` D ) e. ( Base ` W ) ) -> ( ( A ` C ) ( .r ` W ) ( A ` D ) ) = ( ( A ` D ) ( .r ` W ) ( A ` C ) ) )
15 4 5 8 14 syl3anc
 |-  ( ph -> ( ( A ` C ) ( .r ` W ) ( A ` D ) ) = ( ( A ` D ) ( .r ` W ) ( A ` C ) ) )
16 1 2 3 10 6 ascldimul
 |-  ( ( W e. AssAlg /\ C e. B /\ D e. B ) -> ( A ` ( C .* D ) ) = ( ( A ` C ) ( .r ` W ) ( A ` D ) ) )
17 4 5 7 16 syl3anc
 |-  ( ph -> ( A ` ( C .* D ) ) = ( ( A ` C ) ( .r ` W ) ( A ` D ) ) )
18 1 2 3 10 6 ascldimul
 |-  ( ( W e. AssAlg /\ D e. B /\ C e. B ) -> ( A ` ( D .* C ) ) = ( ( A ` D ) ( .r ` W ) ( A ` C ) ) )
19 4 7 5 18 syl3anc
 |-  ( ph -> ( A ` ( D .* C ) ) = ( ( A ` D ) ( .r ` W ) ( A ` C ) ) )
20 15 17 19 3eqtr4d
 |-  ( ph -> ( A ` ( C .* D ) ) = ( A ` ( D .* C ) ) )