Step |
Hyp |
Ref |
Expression |
1 |
|
asclelbas.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
asclelbas.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
asclelbas.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
asclelbas.w |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
5 |
|
asclelbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
6 |
|
asclcntr.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Cntr ‘ 𝑀 ) = ( Cntr ‘ 𝑀 ) |
9 |
1 2 3 4 5
|
asclelbas |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ AssAlg ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝐶 ∈ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
15 |
1 2 3 7 13 14
|
asclmul1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝐶 ) ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝐶 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
16 |
1 2 3 7 13 14
|
asclmul2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝐶 ) ) = ( 𝐶 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
17 |
15 16
|
eqtr4d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝐶 ) ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝐶 ) ) ) |
18 |
10 11 12 17
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝐶 ) ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝐶 ) ) ) |
19 |
7 6 8 9 18
|
elmgpcntrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( Cntr ‘ 𝑀 ) ) |