Metamath Proof Explorer


Theorem asclcntr

Description: The algebra scalars function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a 𝐴 = ( algSc ‘ 𝑊 )
asclelbas.f 𝐹 = ( Scalar ‘ 𝑊 )
asclelbas.b 𝐵 = ( Base ‘ 𝐹 )
asclelbas.w ( 𝜑𝑊 ∈ AssAlg )
asclelbas.c ( 𝜑𝐶𝐵 )
asclcntr.m 𝑀 = ( mulGrp ‘ 𝑊 )
Assertion asclcntr ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Cntr ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclelbas.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclelbas.b 𝐵 = ( Base ‘ 𝐹 )
4 asclelbas.w ( 𝜑𝑊 ∈ AssAlg )
5 asclelbas.c ( 𝜑𝐶𝐵 )
6 asclcntr.m 𝑀 = ( mulGrp ‘ 𝑊 )
7 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
8 eqid ( Cntr ‘ 𝑀 ) = ( Cntr ‘ 𝑀 )
9 1 2 3 4 5 asclelbas ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Base ‘ 𝑊 ) )
10 4 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ AssAlg )
11 5 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝐶𝐵 )
12 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
13 eqid ( .r𝑊 ) = ( .r𝑊 )
14 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
15 1 2 3 7 13 14 asclmul1 ( ( 𝑊 ∈ AssAlg ∧ 𝐶𝐵𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴𝐶 ) ( .r𝑊 ) 𝑥 ) = ( 𝐶 ( ·𝑠𝑊 ) 𝑥 ) )
16 1 2 3 7 13 14 asclmul2 ( ( 𝑊 ∈ AssAlg ∧ 𝐶𝐵𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r𝑊 ) ( 𝐴𝐶 ) ) = ( 𝐶 ( ·𝑠𝑊 ) 𝑥 ) )
17 15 16 eqtr4d ( ( 𝑊 ∈ AssAlg ∧ 𝐶𝐵𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴𝐶 ) ( .r𝑊 ) 𝑥 ) = ( 𝑥 ( .r𝑊 ) ( 𝐴𝐶 ) ) )
18 10 11 12 17 syl3anc ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴𝐶 ) ( .r𝑊 ) 𝑥 ) = ( 𝑥 ( .r𝑊 ) ( 𝐴𝐶 ) ) )
19 7 6 8 9 18 elmgpcntrd ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Cntr ‘ 𝑀 ) )