Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025) (Proof shortened by Thierry Arnoux, 22-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclelbas.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
asclelbas.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
asclelbas.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
asclelbas.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | ||
asclelbas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
Assertion | asclelbas | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclelbas.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
2 | asclelbas.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
3 | asclelbas.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
4 | asclelbas.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | |
5 | asclelbas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
6 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
7 | 4 6 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
8 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
9 | 4 8 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
10 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
11 | 1 2 7 9 3 10 | asclf | ⊢ ( 𝜑 → 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑊 ) ) |
12 | 11 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |