Metamath Proof Explorer


Theorem asclelbas

Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a 𝐴 = ( algSc ‘ 𝑊 )
asclelbas.f 𝐹 = ( Scalar ‘ 𝑊 )
asclelbas.b 𝐵 = ( Base ‘ 𝐹 )
asclelbas.w ( 𝜑𝑊 ∈ AssAlg )
asclelbas.c ( 𝜑𝐶𝐵 )
Assertion asclelbas ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Base ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclelbas.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclelbas.b 𝐵 = ( Base ‘ 𝐹 )
4 asclelbas.w ( 𝜑𝑊 ∈ AssAlg )
5 asclelbas.c ( 𝜑𝐶𝐵 )
6 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
7 eqid ( 1r𝑊 ) = ( 1r𝑊 )
8 1 2 3 6 7 asclval ( 𝐶𝐵 → ( 𝐴𝐶 ) = ( 𝐶 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
9 5 8 syl ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐶 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
10 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
11 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
12 4 11 syl ( 𝜑𝑊 ∈ LMod )
13 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
14 10 7 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
15 4 13 14 3syl ( 𝜑 → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
16 10 2 6 3 12 5 15 lmodvscld ( 𝜑 → ( 𝐶 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ∈ ( Base ‘ 𝑊 ) )
17 9 16 eqeltrd ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Base ‘ 𝑊 ) )