Metamath Proof Explorer


Theorem asclelbas

Description: Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025) (Proof shortened by Thierry Arnoux, 22-Sep-2025)

Ref Expression
Hypotheses asclelbas.a 𝐴 = ( algSc ‘ 𝑊 )
asclelbas.f 𝐹 = ( Scalar ‘ 𝑊 )
asclelbas.b 𝐵 = ( Base ‘ 𝐹 )
asclelbas.w ( 𝜑𝑊 ∈ AssAlg )
asclelbas.c ( 𝜑𝐶𝐵 )
Assertion asclelbas ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Base ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 asclelbas.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclelbas.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclelbas.b 𝐵 = ( Base ‘ 𝐹 )
4 asclelbas.w ( 𝜑𝑊 ∈ AssAlg )
5 asclelbas.c ( 𝜑𝐶𝐵 )
6 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
7 4 6 syl ( 𝜑𝑊 ∈ Ring )
8 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
9 4 8 syl ( 𝜑𝑊 ∈ LMod )
10 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
11 1 2 7 9 3 10 asclf ( 𝜑𝐴 : 𝐵 ⟶ ( Base ‘ 𝑊 ) )
12 11 5 ffvelcdmd ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Base ‘ 𝑊 ) )