| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclelbas.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
asclelbas.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
asclelbas.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
asclelbas.w |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
| 5 |
|
asclelbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 8 |
1 2 3 6 7
|
asclval |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐴 ‘ 𝐶 ) = ( 𝐶 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) = ( 𝐶 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 11 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| 14 |
10 7
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 15 |
4 13 14
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 16 |
10 2 6 3 12 5 15
|
lmodvscld |
⊢ ( 𝜑 → ( 𝐶 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 17 |
9 16
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |