Metamath Proof Explorer
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lmodvscld.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmodvscld.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmodvscld.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
|
|
lmodvscld.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
lmodvscld.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
|
|
lmodvscld.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
|
|
lmodvscld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
Assertion |
lmodvscld |
⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvscld.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodvscld.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lmodvscld.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lmodvscld.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lmodvscld.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lmodvscld.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
| 7 |
|
lmodvscld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 8 |
1 2 3 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| 9 |
5 6 7 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |