Metamath Proof Explorer
		
		
		
		Description:  Closure of scalar product for a left module.  (Contributed by SN, 15-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lmodvscld.v |  | 
					
						|  |  | lmodvscld.f |  | 
					
						|  |  | lmodvscld.s |  | 
					
						|  |  | lmodvscld.k |  | 
					
						|  |  | lmodvscld.w |  | 
					
						|  |  | lmodvscld.r |  | 
					
						|  |  | lmodvscld.x |  | 
				
					|  | Assertion | lmodvscld |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodvscld.v |  | 
						
							| 2 |  | lmodvscld.f |  | 
						
							| 3 |  | lmodvscld.s |  | 
						
							| 4 |  | lmodvscld.k |  | 
						
							| 5 |  | lmodvscld.w |  | 
						
							| 6 |  | lmodvscld.r |  | 
						
							| 7 |  | lmodvscld.x |  | 
						
							| 8 | 1 2 3 4 | lmodvscl |  | 
						
							| 9 | 5 6 7 8 | syl3anc |  |