Metamath Proof Explorer


Theorem atbiffatnnb

Description: If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016)

Ref Expression
Assertion atbiffatnnb φψφ¬¬ψ

Proof

Step Hyp Ref Expression
1 idd φψψ
2 notnotb ψ¬¬ψ
3 1 2 imbitrdi φψ¬¬ψ
4 3 a2i φψφ¬¬ψ